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Abstract

In recent years, a plethora of algorithms has been devised for efficient human ac-

tivity recognition. Most of these algorithms consider basic human activities and

neglect the postural transitions - because of their subsidiary occurrence and short

duration. However, postural transitions assume a significant part in the enforce-

ment of an activity recognition framework that cannot be neglected. This work

proposes an ensemble multi-model activity recognition approach that employs ba-

sic and transition activities by utilizing multiple deep learning models simultane-

ously. For final classification, a dynamic decision fusion module is introduced that

generates predictions based on the weighted average method. Experiments were

performed on the publicly available datasets and the proposed approach achieved

the classification accuracy of 96.11% and 98.38% for the transition and basic ac-

tivities, respectively. The outcomes show that the proposed method is superior to

the state-of-the-art methods in terms of accuracy and precision.
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Chapter 1

Introduction

1.1 Human Activity Recognition

Activity Recognition (AR) inculpates the recognition, interpretation, and assess-

ment of daily-life human activities hence known as Human Activity Recognition

(HAR). Wearable sensors such as accelerometer, gyroscope, depth, etc. can be

attached to assorted body locations to record the movement patterns and actions.

In recent years, HAR research has drawn in critical consideration on account of

its boundless applications such as fashion [1], surveillance systems [2, 3], smart

homes [4] and healthcare [5].

The main ideas of the activity recognition framework are to track and assess human

actions and understand the behavior of humans in their respective surroundings.

Using multi-type motion patterns, Activity Recognition systems recapture and

extract statistical features such as, - temporal, spatial, etc. to predict and under-

stand human behavior. There exist numerous such application tools and platforms

that encapsulate HAR generalities and the advanced systems are designed and

developed there. Human Activities are generally categorized as basic activities,

complex activities, and the postural transitions between or within these activi-

ties. Postural transition is a finite movement between two activities that varies

between humans in terms of time and actions. Most of the works do not take

into account the postural transitions because of their short duration. However,

they play an important role in the efficient recognition of activities when multiple

1
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tasks are performed in a shorter duration of time [6]. Generally, HAR systems are

based on two categories which are vision-based devices and Sensor-based devices.

Vision-based HAR does have a mature base so do they have limitations compared

to sensor-based devices.

Smart sensors are embedded in our smartphones nowadays which are compact, and

do not cause any unnatural disturbance, and can be worn in quotidian exertion.

Such sensors can record any change in human action and can provide real-time

observation with a minimum time lag. The most common sensors that come

embedded in smartphones are an accelerometer, gyroscope, and compass which

can be used to generate tri-axial movement data [7]. These sensors can also be

used in conjunction with and fed to machine learning models to recognize activities

better. The main difference between an accelerometer and a gyroscope is that one

can sense rotation while the other can’t. A gyroscope is typically used to generate

orientation whereas an accelerometer is used to calculate linear acceleration.

1.1.1 Applications of HAR

Progress in the areas of human activity recognition has significantly bettered our

daily lives that can unquestionably be considered ostensible relating to the ascent

of daily life contemplation. Several HAR systems have been designed to automate

the fore mentioned applications; however, assembling a completely automated

HAR framework can be an extremely daunting undertaking since it requires a

colossal pool of movement data and methodical classification algorithms. In addi-

tion, it is a troublesome undertaking in light of the fact that a solitary movement

can be acted in more than one way [8]. HAR applications have also been em-

bedded with the IoT environment. Multiple IoT devices can also be attached to

a serialized network to gather data HAR data with sensor and vision-based de-

vices. A generalized IoT-based HAR framework is shown in Figure 1.1. The figure

portrays the flow of an Iot device connected to different real world applications.

[10] harnessed multiple detectors such as, - heart rate detector, temperature de-

tector, pressure detector, etc. The system worked on the same principle and

hardware as the fore-mentioned. The only key difference was that equal voltage
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Figure 1.1: IoT Based HAR Architecture from [9]

was provided to each sensor along with the inclusion of a step-down transformer.

The purpose of the transformer was to manage the load on each sensor such that

only the required voltage is provided to the respective sensor. Unlike the previous

work, the hardware device was compact with a user-friendly system. Unlike pre-

vious works, this approach had no such limitations or drawbacks and was easy to

use. In another approach, [11], the magnitude of an automated health guidance

system with detectors exercising a robust framework with more focus on security

and bareness was introduced. The conjunction of multiple sensors can generate

a substantial amount of data and meaningful data which can be used to extract

quality features by using a machine learning algorithm.

1.2 Machine Learning (M.L)

Traditional M.L algorithms are utilized as a classification tool and are contrary

to achieving satisfactory results. Activity recognition using standard Machine

Learning approaches such as Support Vector Machine (SVM) [12, 13, 14, 15], K

Nearest Neighborhood KNN [16, 17, 18], Discrete Cosine Transform (DCT) [19, 20,
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21], Decision Tree (DT) [22, 23] and Random Forest (RF) [24, 25] etc. have been

reported to produce good results under controlled environment [26]. The accuracy

of these models heavily depends on the process of feature selection/extraction.

A volume of research has been conducted on activity recognition based on fea-

tures obtained from a variety of datasets collected using various sources such as

accelerometers and gyroscopes. However, it is of great importance that a feature

selection preprocess module is applied to select a subset that prunes away any

noise and redundancy, which would otherwise only degrade the performance of

the recognition system. This computation is also called dimensionality reduction,

i.e. selection of features that would complement each other. A variety of feature

selection methods have been used to improve performance of activity recognition

systems, such as correlation-based [27], energy-based [28], cluster analysis [29],

AdaBoost [30], Relief-F [31], Single Feature Classification (SFC), Sequential For-

ward Selection (SFS) [32], and Sequential Floating Forward Search (SFFS) [33].

The aim of feature selection methods is to drop out features that carry the least

information in discriminating an activity, consequently increasing efficiency with-

out compromising robustness. For more on feature selection methods, readers are

referred to a survey in [34]. Mi Zhang and Alexander A.Sawchuk have proposed

an SVM-based framework for analyzing the effects of feature selection methods

on the performance of activity recognition systems [35]. This research has shown

that the SFS method has performed better than Relief-F and SFC methods. Es-

sentially, this points out the fact that the topmost relevant features encode more

information than the left out features, which considerably increases the perfor-

mance of the activity recognition system. However, this can not be considered

as a fulfilled requirement in building an efficient HAR system as a robust HAR

system has more to it then higher average accuracy in recognition of activities.

Likewise, Ahmed et al. [36] demonstrated a feature selection model based on a

hybrid SFFS feature selection method that selects/extracts the best features in

view of a set of specific rules. Moreover, sets of the best features are formed and

contrasted with the next set of features. The final optimal features were input to

an SVM classifier for activity classification. However, machine learning techniques
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to date have used shallow-structured learning architectures that only use one or

two nonlinear layers of feature transformation. And usually shallow architectures

refer to statistical features such as mean, frequency, variance, amplitude, etc. that

could only be used for low-level activities like running, walking, standing that

are well-constrained activity and could not model complex postural situations

[37]. Moreover, lack of good quality data due to the costly process of labeling

that requires human expertise/domain knowledge is also a bottleneck as well as

manual selection of features are vulnerable to a margin of human error that would

not generalize well on unseen data, because activity recognition tasks in real-life

applications are much complicated and need close collaboration with the feature

selection module [38].

1.3 Deep Learning

As the volume of the dataset has increased to an unprecedented level, in recent

years, deep learning (D.L) has accomplished noteworthy results in the space of

HAR. One of the affecting aspects of deep learning is the automatic feature iden-

tification and classification with high accuracy, which consequently produced an

appeal in the space of HAR [39]. A substantial amount of uni-model and hybrid

approaches have been introduced to gain benefit from deep learning techniques

that cater to the shortcomings of the machine learning domain and utilize the

multiple levels of features found in different levels of hierarchies. Deep Learning

models involve a hierarchy of layers to accommodate low-level and high-level fea-

tures as well as linear and nonlinear feature transformations at these levels, which

helps in learning and refining features. To this end, models such as CNN [40]

capable of performing convolutions on dense layers of data, RNN [41] capable of

preserving information in the past and LSTM [42] capable of preserving past infor-

mation with longer sequences of data, etc. are used to overcome the limitations of

traditional machine learning algorithms that were dependent on manual features

and erroneous selection/classification of features could prompt inconvenient im-

pacts for the applications at hand. A conventional CNN structure is represented

in Figure 1.2. Therefore, deep learning networks found a natural application in

recognition tasks and have been popularly used for feature extraction in activity
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recognition research [43]. One downside to the deep learning paradigm especially

using the hybrid architectures is their increased cost of processing the available

huge amount of datasets. However, it is worth the cost because a HAR system

requires accurate classification results of the deep learning models. However, mod-

ern day hardware resources have significantly increased and are capable of dealing

with huge amount of data with limited computational cost. Moreover, state-of-

the-art tools have also been used introduced which are capable of automatizing

several bulky tasks which required extensive time and effort.

Figure 1.2: Overall structure of the Conventional CNN.

1.3.1 Problem Statement and Research Questions

From the detailed discussion in the previous sections, it can be concluded that a

plethora of algorithms is available for Human Activity Recognition, however, most

of the works ignore the activity transition factor and do not employ transitional

activities. However, postural transitions play an important role in improving the

activity recognition rate of a HAR system and accurately identifying activities

in real-time activity recognition scenarios as well. Moreover, with the availabil-

ity of transition data, analysis can be done to better recognize, classify, cluster,

and predict what human activities are carried out for further decision-making.

Based on these limitations and drawbacks, we have devised the following Research
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Questions: 1 - Can we accurately identify postural transitions with high accuracy

when the number of instances is very small compared to basic activities? 2 - Can

we achieve accuracy gain with the simultaneous training of neural networks in-

stead of in a pipeline flow? 3 - Can we increase the classification accuracy of the

state-of-the-art by modifying their architecture?

The rest of the thesis is organized as follows: Chapter 2 shows a detailed discussion

on the literature related to HAR. Chapter 3 discusses the proposed Methodology

and its modules. Chapter 4 provides an in-depth discussion on the experimental

environment and results. Chapter 5 concludes the thesis and provides the future

prospects of the proposed approach.



Chapter 2

Literature Review

2.1 Introduction

To the current date, HAR is being carried out via two types of devices i.e., Vision-

based devices and Sensor-based devices [44].

Depth data is acquired grounded on triangular and time-series techniques. Tri-

angular motion is recorded by utilizing the vision-based devices that are capable

of retrieving the depth data which is acquired by observing and recording a sim-

ilar scene from multiple angles. Vision-based device encapsulates a generic rule

which translates the depth as a difference between two similar angles. This may

necessitate information regarding the confirmation of vision-based devices which

may lead to a newly initiated analysis or change in the whole configuration of the

system. To that end, a reasonable approach is based on the light patterns which

differentiate between the objects so that the respective object depth can be ex-

tracted without a hassle. Moreover, scanners such as LiDAR can record the time

that light takes to bounce off of an object (from the sensor back to the sensor)

[45].

The milieu between different activities plays an important role to distinguish one

activity from another. Tracking a person’s movement duration can be very chal-

lenging in certain contexts. Either, the movement area of the person may be

uneven in the recording and the environmental conditions can cast a shadow or

8
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change the recorded results compared to reality. Observing one movement from

multiple points of view may also cause different image obedience. Considering

the restrictions of conventional vision-based devices which include the positional

issues [46].

Multiple positioned cameras can be useful to cover simultaneous angles and over-

come the standpoint issues, more likely in cases where obedience covering various

angles can form a conformable slide. Avoiding the background dynamic lighting

can be very helpful as it increases the complexity for differentiating backgrounds

from the foregrounds. Rotating a camera can increase the complexions so it is

better to use multiple cameras simultaneously. In vision-predicated behavior de-

tection, the problem underlying the usage has to be handled explicitly [47].

Generally, movements are recorded in steady time slices. Feeding time-sliced data

reduces the load on the HAR system however it needs an external data conversion

and time-slicing module anteriorly. The drawback of this method is that it may

not always be implementable. Several approaches have been discussed and taken

into account this factor as well. Moreover, the accuracy of different activities may

vary based on the training and the quality of data collected. Activity recognition

rate importantly affects the fleeting degree of activity, particularly when more

components are utilized. A robust human behavior detection system ought to be

consistent to various paces of accomplishment, precision and naming the weakly

labeled data. This gives a sound organization to correlation yet the sets hourly

require a portion of the anteriorly referenced dataset. Several sensible datasets

have been presented which incorporate labeled data accumulated from films or

tapes. As the number of features is available in abundance, they’re restricted in

the quantity of training and test instances. Likewise, labeling these instances is

troublesome and very costly in terms of human resources since there exists no such

automated module for efficient labeling of instance [48].

An accelerometer encapsulates an electro-mechanical detector that is designed to

measure the static and dynamic acceleration. Statics acceleration is the constant

force acting on a body, like soberness or division. These forces are predictable

and undeviating to a large extend. For the prototype, the acceleration due to
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soberness is constant at 9.8 m/ s, and the soberness force is fair the same at

every point on earth. Dynamic acceleration forces are non-uniform, and the semi-

formal prototype is a vibration or shock. A motor crash is an excellent prototype

of dynamic acceleration. Presently, the acceleration change is unforeseen when

compared to its precedent state. The supposition behind accelerometers is that

they can discover acceleration and convert it into measurable quanta like electrical

signals [49].

Normally, activity takes place in a limited amount of time which is broken into

smaller units to differentiate the movement patterns. Taking into consideration

the timestamp and performance of the following units, an activity can be broken

into segments as; compound exercise, succeeding activity, concurrent activity, and

interleaved activity. Predicated behavior, conduct, and activity are filtered based

on the ranking of patterns which can then be combined with milieu statistics. To

this very day, even modern surveillance and security networks are manually mon-

itored by humans. In actuality, these networks should be handled and maintained

automatically without any human involvement. A hyping amount of networked

security feeds and cameras dwindle the yield of an observer. To that end, techno-

logically advanced organizations have been seeking a way to automate this process

while avoiding the drawbacks of vision-based devices. Examples of such technology

can be given as motion sensors embedded with cameras or infrared-based alarm

generation such that a person may prompt towards the feeds that have detected

unnatural observations [50]. Head-ways in the areas of physics have also extraordi-

narily consummated our satisfaction that is most certainly presumed in the ascent

of quality life expectation. With the increase of cost for daily life needs which

include medical and household needs, these technological advancements have pro-

vided us with immense time and money-saving measures which have made our

surroundings productive and easy-to-deal-with overall. For some time, activity

recognition has surfaced as an impactful solution for the disabled and infant care

by providing intensive and continuous monitoring. Simple natural exertion is im-

plemented across many hospital and healthcare organizations with positive results.

Most of the living probabilistic strategies for activity detection may perform well

and apply shallow machine learning algorithms. Notwithstanding, these methods
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are way complicated than other conventional strategies because the computational

cost increase as the data increase, moreover it is very difficult to fine-tune their

hyper-parameters. Due to manual feature selection and fine-tuning, the relevance

of the same actions must be considered however they fail to achieve so. Hidden

Markov Models considers the features independent to better co-relate with other

features, however, this method does not always work similar motions in ambiguous

activities. However, the sequence of motion cannot be ignored because the data

can be normalized and tagged but this causes the bias problem. To summarize,

Hidden Markov Model fails to achieve better results where complex activities are

concerned because it fails to distinguish between patterns, hence utilized in case

of basic and static activities more [51].

The bias problem can however get overcome by multiple means. It can either

be solved by selecting the most relevant dataset, by supervising the learning pro-

cess, or by increasing the number of features. Another most common solution

corresponds to the usage of smaller datasets with more prominent features. This

will avoid overfitting as well. Conditional Random Field (CRF) performance is

way ahead in natural language processing compared to Hidden Markov Model,

however, when it comes to real-time implementation, they fail to achieve better

results due to the inclusion of various parameters. Fine-tuning these parameters

on sparse data can be a very challenging task and it also needs to be re-tuned if

the data sale varies. To that end, it can be concluded that another goal of an

activity recognition system is to verbatim dredge common natural activities in a

real-time environment. For that specific purpose, numerous information-mining

tactics are being used to vaticinate activities with perfection [52]. To that end,

the existing literature is classified into two groups: approaches based on (a) ba-

sic activities and (b) transition activities. Both of these categories are further

incorporate approaches based on conventional machine learning, deep learning,

and hybrid approaches. Hybrid works incorporate both machine learning + deep

learning and deep learning + deep learning approaches. We have not included

the machine learning + machine learning approaches in our research work as we

wanted to target deep learning approaches for HAR. The details are provided in

the subsequent subsections.
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2.1.1 Basic Activities

Wan et al. [53] demonstrated a CNN framework which showed that the fine-tuned

conventional CNN still outperforms SVM, Multilayer Perceptrons (MLP), LSTM,

and Bidirectional LSTM (BiLSTM) networks. Moreover, the results have shown a

significant increase in classification accuracy compared to machine learning classi-

fication models such as DT, RF, etc. However, these approaches have limitations

as they can only extract simple features. Zhou et al. [54] demonstrated a deep

learning framework for weakly labeled data which was able to extract features

well. The framework mainly accommodated an auto-labeling technique that was

implemented on top of a HAR system and employed a distance-based reward rule

strategy to label the data. The newly labeled data was fused with the strongly

labeled data and passed through an LSTM module for feature extraction. This

approach was focused on the labeling of unlabeled and weakly labeled data rather

than the classification accuracy. To that end, it required a large dataset of un-

labeled data for accurate labeling which resulted in an increased computational

cost. Computational cost incubates the overall time a model takes to train and

generates a successful set of predictions.

Activity recognition is considered to be a burdensome bailiwick corresponding to

the experimenter owing to the difficulties faced in the activity detection and han-

dling of several denizens generated. The first disquisition on HAR introduced it

as a conventional movement detection issue. Traditional algorithms like ANN’s,

HMM’s, SVM’s have been considerably implemented concerning the pattern recog-

nition systems, notwithstanding, the most recent works in activity recognition have

changed course due to the introduction of deep neural networks. The conventional

shallow learning approaches require efficient extraction of features which is depen-

dent on the knowledge of the respective domain and feature engineering. This

obstructs the development which also limits the transfer of one domain knowledge

to another. Moreover, it’s convenient for feting small degree conditioning akin

to the conditioning of day-to-day livings, notwithstanding, it’s nearly undoable

for the conventional shallow learning algorithms to detect complex activities and

detect the small movement pattern changes from it. This is due to the fact that
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machine learning models strictly follow supervised learning where labeled data has

to be fed to the models. Notwithstanding, deep neural networks learn the shallow

and deep statistical features little by little which excluded the limitations of M.L

algorithms [55].

Likewise, Convolution neural networks have been introduced which show superior

performance in automatic feature detection and extraction as they can perform

deep convolution on multiple layers of data. Activity recognition presents diffi-

culties related to the analysis of actual movement scenarios, acknowledgment of

molding for the availability of numerous dopeheads, diversity for perceived bias,

and the detection of unrequired variables and parameters while deploying the same

model for multiple data types. Normally huge pools of information are fed to deep

learning models during the training because they perform the best when the num-

ber of observations is in abundance. Notwithstanding, it is not always compulsory

or enough to only label the data as there can be a huge variance in the quality of

reading as well. However, this issue can be resolved by transfer learning which is

capable of co-relating various features and can extract the dependencies between

them. Though it is a very useful method, however, it can cause an obvious in-

crease in the cost of the system as they take a long time in the training of network

when the amount of information is too vast. To that end, different approaches

regarding transfer learning are being introduced to sift the domain information

within multiple networks [56]. Recently, the use of edge-cutting technologies in

executing behavior detection frameworks is in its juvenility environment. The

literature emphasizes the requirement for re-processing of sensor-generated data

in an efficient manner. Therefore, it explains in what manner calls are grounded

and analyzed for several colored perspectives, alike perspectives of employment

management systems, healthcare, human surveillance, education, and synthetic

sectors. Substantial achievements have been grasped in the field of mobile edge

computation environment by employing conventional machine learning algorithms,

offering smart results in both real-time and predefined IoT applications. New

uses for deep scholarship tactics have wax inchmeal probabilities based on several

points, similar better than average reckoning faculty providing a refined collection

of information. To achieve the goals, deep neural networks with dense layers are
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utilized. The more the dense layers, the better the model will be able to extract

quality features. However, it will have an impact on the overall computational cost

of the approach. They can break down the information into several sub-classes and

divide them into dense layers for a better understanding of features and generate

required output [57].

To summarize this discussion, deep neural networks can achieve groundbreaking

results in the areas of cloud and fog computing. Specifically in edge computing

due to the division of layers such that it can be unloaded either with minimal

mediator information targeted towards a waitperson. Another beneficial aspect of

this methodology is the security of information during the communication between

multiple networks. This method is very fast and efficient when dealing with long

sequences of time-series information. Notwithstanding, longer sequences of data

do cause some drawbacks such as the extraction of useful information becoming

limited. This set of data after crossing a specific threshold, will not show any gain

in the learning which will eventually drop the accuracy of the network. To handle

longer sequences of data, the evolved networks LSTM are used. LSTMs are the

updated and advanced versions of conventional RNN’s. They encapsulate multiple

gated units which control the flow of information while employing a memory cell.

This memory cell is capable of storing long-term dependencies and hence LSTM’s

can better process and deal with longer sequences of time series data. With the

sudden advance in knowledge and technology, the newer models have capabilities

beyond the scope of conventional M.L networks, however, with this sudden ad-

vancement, there are issues sure to come such as limitations of current internet

services, connectivity, and the major security portfolios which require utmost at-

tention. We can utilize traditional machine learning models in a traditional setup

where minor predictions are required. All in all, even in the private, public, and

basic care environments such as homes, parks, offices, healthcare institutes, etc.,

IoT-based frameworks are a need that cannot be neglected [58]. Chen et al. [59]

demonstrated an Attention Based BLSTM (ABLSTM) framework by introducing

the concept of attention that assigns weights to features based on their importance

for the current recognition scenario. The results showed superior classification ac-

curacy compared to many recent approaches in both categories; shallow as well
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as deep learning. Since it was a conventional BLSTM model with an Attention

module, therefore it was compared with conventional machine learning works as

well. All the experimental evaluations were based on the publicly available pre-

processed data and no real-time data collection was performed which is of utmost

importance during the testing of a signal-based system. Zhu et al. [60] demon-

strated a Deep LSTM (DLSTM) architecture for feature recognition and filtration.

Smartphone sensors were employed to train the model on labeled and unlabeled

data for human activity recognition.

DLSTM encapsulated multiple LSTM layers between the I/O gates. The raw data

was processed through the augmentation module to build the measure of infor-

mation and the removal of Gaussian noise was initiated to filter irregularities in

the final input. The DLSTM separated the low-level features which were dropped

out and the high-level features were extracted. The unsupervised data loss em-

broiling the unlabeled data was calculated and labeled on the basis of predefined

rules. Experimental evaluations on the proposed approach based on publicly avail-

able datasets showed superior results compared to several recent semi-supervised

frameworks within a user-controlled environment. Xu et al. [61] fused a conven-

tional RNN with Inception Neural Network (INN) model targeted at HAR based

on wearable sensors to create InnoHAR. The INN architecture is composed of

various deep layers consisting of multiple convolution layers that are parallel to

pooling layers which is what forms the inception layer. The INN architecture is

tested on multiple publicly available datasets and it portrayed superior perfor-

mance compared to modern Deep-Convolutional-LSTM models. The drawback of

this framework was the poor initialization of INN that required a lot of computa-

tion to be dealt with and minor changes could require the costly retraining phase

to be repeated.

2.1.2 Transition Activities

In both machine and deep learning, tools such as MATLAB are used, which can

break down the structures of M.L and D.L networks. They are capable of extract-

ing and evaluating different applications and trends by the training of networks.
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Where they learn based on different datasets. M.L networks are used for clas-

sification purposes where they train on the basics of real-world data and create

classes that are used to categorize the data. Usually, the dataset is composed of

raw sensor data which is converted into a sort of feature array before passing it to

the network for training. The network, whichever it may be, learns of the basis of

some mathematical evaluations and generated classes to actualize the data [62].

Machine Learning encapsulates deep learning, and the basic point of differentiation

is the automated feature detection and extraction in deep learning networks. Just

like machine learning, input has to be fed manually into the deep neural networks,

however, once the input is fed and the training starts, deep neural networks auto-

matically start the feature detection process and they can extract shallow as well

as deep features from multiple layers of the input data. This data can either be

statistical data, language data, or images. Machine learning is normally integrated

concerning the programs incorporating prognosticating production or diving into

mainstream applications where low-level pattern detection is required. However,

the limits of these applications are convenient because fact that they are based

on smaller data pools. To that end, machine learning models can make correct

predictions but in a limited context and applications. Several machine learning

algorithms have been designed to date which involves K-mean, Apriori, Markov

model, KNN, Logistic regression, etc. [63]. In areas like, image recognition, image

classification, signal processing, and natural language processing, D.L models are

more widely used due to their adaptive nature and automated feature detection.

Spatial and temporal features are usually extracted in these areas which require in-

depth analysis of the dataset and a capable data classification model as these fields

require feature matching and precise selection. Most often used deep learning net-

works involve CNN, MLPs, Self-Organizing Maps, Deep Belief Networks, LSTM’s,

Autoencoders, and Deep Q networks. However, machine learning models are way

more convenient when the requirement is based on urgency rather than quality

and performance as machine learning models can perform faster but smaller tasks

and generate the output in a limited amount of time while spending a nominal

computation cost. Because in neural networks, the amount and number of features

play a major role in the overall computational time of the model. To that end,
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for smaller tasks where higher accuracy with in-depth learning is not required,

machine learning algorithms are most commonly used as they can reduce the cost,

and computational time 10 folds compared to deep neural networks [64]. Deep

neural networks require a significant amount of time for training and validation.

In the context of real-time scenarios, pre-training deep learning models can be a

very good approach. This can be achieved by integrating transfer learning within

deep neural networks. To sum it up, deep learning models are not the be-all and

end-all for classification problems as they can take a second as well as a month to

train. This is strongly dependent on the amount and quality of data. Moreover,

the nature of the model utilized plays an important role as well. Researchers who

opt to experiment using the deep learning model should be very well aware of the

fact that training a robust or deep model with a huge amount of data can take

them a very long period to achieve results. Moreover, a neural network needs to

be retrained on multiple parameters for it to perform well. Then again, all of this

depends on the quality of data [65].

All of the fore mentioned works have a significance of their own, however, all of

them are based on basic human actions. None of these works have discussed or

employed the transition activities. Though Postural transition may not have to

emphasize effect on the system due to their short duration and lower incidence,

the validity of this statement is dependent on the application prospects. Shi et al.

[66] proposed a standard deviation trend-analysis (STD-TA) based architecture to

recognize transition activities. For the reduction of dimensions in data, “statis-

tical features” were extracted and a conventional SVM was utilized for classifier

training. The self-collected dataset was based on 8 basic daily life activities and

10 transitions.

Liu et al. [67] demonstrated a novel Transition-aware housekeeping task monitor-

ing approach to outline the importance of activity transition events in housekeep-

ing tasks related to elderly people. The self-generated dataset was divided into

three parts which contained the basic housekeeping activities, inter-transition,

and intra-transition activities. The approach was based on an SVM model with

an embedded transition event detection module and it was able to achieve the
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classification accuracy of 81.62%. Ahmad et al. [68] implemented a DBN-based

approach that extracted features such as mean, median, auto-regressive coeffi-

cients, etc., from the raw data obtained from sensors. To make the features more

robust, the features were further processed through a Kernal Principal Component

Analysis (KPCA) and Linear Discriminant Analysis (LDA) unit. The proposed

network was compared with SVM and ANN networks and has been shown to

achieve an accuracy of 95.8%. Gusain et al. [69] proposed a transition-aware Gra-

dient Boosted Decision Tree approach. They implemented incremental learning

by utilizing ensembles of SVM. Batches of data were trained on frequent itera-

tions but after the initial cycle of training, all the other cycles were trained on

the incorrectly classified data. In the end, the weighted sum of all the machines is

calculated and the accuracy of the whole system is computed and the accuracy of

the whole system is calculated to be 94.9%. Yulita et al. [70] presented a hybrid

model based on a classic KNN and SVM model where the SVM kernel was poly-

nomial. Moreover, they imbued their approach with Radial Basis Function (RBF)

and the Sigmoid function. After cross-validation, they managed to achieve an ac-

curacy of 86%. These results were achieved due to the RBF kernel as it is a useful

function to solve classification problems by finding non-linear classifiers. If not for

the RBF kernel, the following method would not have been possible to show even

average results. On the other hand, even with the RBF kernel, the approach does

not show emphasizing results. Atrsaei et al. [71] designed a location-independent;

postural-transition detection algorithm. Postural transitions were detected by the

sensor following the vertical acceleration calculation and kinematic features were

extracted to characterize the postural transitions. The approach was focused on

the algorithm rather than the accuracy of the system. The proposed approach was

independent of the placement of the sensor on the body and produced satisfactory

results. Dan Setterquist [72] evaluated multiple networked LSTM’s on a collected

dataset of basic activities and postural transitions and managed to achieve 89%

accuracy in a user-controlled environment. However, utilization of multiple LSTM

units in a pipelined flow abruptly slows down the whole model and increases the

complexity of the system.

In a more recent study, Wang et al. [73] presented a hybrid D.L method for activity
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recognition in which multi-sensor data was passed through a CNN and the output

was classified by the LSTM. The fundamental accomplishment of this approach is

the activity transition identification alongside basic activities while emphasizing

the fact that most of the research works do not employ the postural transitions

however in human behavior recognition this is non-negligible, hence an important

task to consider. The accuracy of real-time movement recognition is strongly

dependent on the detection of postural transitions. The triaxial multi-sensor data

was fused and fed to the multilayered CNN. The resultant feature matrix from

the CNN was flattened and input to the LSTM module. LSTM was separately

trained on the sensor data and a feature fusion was performed before the final

classification. The benchmark showed superior results compared to state-of-the-

art CNN, LSTM, CNN-BiLSTM, and CNN-GRU models on a publicly available

dataset.

Taking into consideration the state-of-the-art technologies and innovations, the

M.L trend is shifting from the traditional high-power consuming hardware devices

to low-power mobile devices. This shift is referred to as TinyML [74]. This pretty

much breaks the high-power consumption barrier in the areas of M.L. By bring-

ing the inference to low-power devices, the responsiveness of the whole system

can be increased while reducing the power consumption-based cost of the system.

Banbury et al. [75] employed differential neural architecture search (DNAS) to

bring forward a MicroNet model deployed on MCU which showed superior results

on TinyML benchmark tasks which included audio-based keyword spotting, visual

wake words, and anomaly detection. DNAS models were utilized due to their char-

acteristics of requiring low MCU memory and energy. The lower consumption of

energy itself is an efficient constraint. To that end, bringing forward a model with

low energy consumption supported with a lower memory usage is a groundbreak-

ing achievement that can revolutionized micro devices. The current limitations of

TinyML are restricted to shrinking the size of the machine learning model, how-

ever, with the passage of time and advancement in technology lightweight neural

networks are being designed which can take up to a few hundred KB’s of space

on the TinyML devices and produce substantial results. In prospect, TinyML

can also play an important part in the applications of Augmented Reality (AR)
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headsets that need to be kept powered on due to shared constraints. The dis-

cussed literature is summarized in Table 2.1. Therefore, the literature signifies the

implementation of deep learning networks over conventional machine learning algo-

rithms where the performance and accuracy of the system are concerned. For the

introduction of an efficient and scalable HAR system, this paper introduces a novel

hybrid model which takes both, basic activities and postural transitions (transi-

tion activities), into account. Accordingly, we integrated multiple deep learning

models for feature extraction and proposed a decision fusion module for activity

recognition. We then benchmarked the performance of the proposed approach on

multiple datasets and compared them with the state-of-the-art works.

Table 2.1: Literature Summary.

Ref. Model Type Network Accuracy (%) Transition Activities Weaknesses

[36] Machine Learning SVM + SFFS 96.80 No Higher accuracy on
smaller datasets—
increase in data causes
decrease in accuracy.

[66] Machine Learning STD-TA 80.00 Yes A conventional SVM
with an average ac-
curacy that extracts
statistical features to
differentiate between
transitional and basic
activities.

[67] Machine Learning SVM-TED 81.62 Yes A traditional SVM
with a transition event
detection module
to detect postural
transitions but lacks
accuracy for efficient
identification of an
action.

[53] Deep Learning CNN 91.00 No Requires strongly la-
beled data as well as
increased features in
data.
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Table 2.2: Literature Summary - Continued from Previous Page.

Ref. Model Type Network Accuracy (%) Transition Activities Weaknesses

[59] Deep Learning BiLSTM 87.50 Yes Single BiLSTM unit
cannot extract quality
features from the in-
put, no past informa-
tion to correlate the
data with. Works bet-
ter on time series data.

[72] Deep Learning Multi-LSTM 89.00 Yes Multiple pipelined
LSTM units used in
this approach, causing
the network to train
slowly and increasing
the complexity of the
whole model. Any
fault or irregularity in
a single LSTM unit
affects the overall
pipeline of LSTM
units.

[68] Deep Learning DBN 95.80 Yes DBN makes the net-
work architecture more
complex to train, and
it has been replaced
with ReLu, which bet-
ter handles the vanish-
ing gradient problem.

[61] Hybrid INN + RNN 94.00 No INN has poor initial-
ization, which makes
it hard to debug, thus
increasing the cost of
the system. More-
over, a fine-tuned CNN
can achieve the same
or better performance
than INN, which is no
longer used in state-of-
the-art systems.

[69] Hybrid GBDT 94.90 Yes Gives best results
on smaller datasets
whereas accuracy
decreases as the data
increase.

[73] Hybrid CNN + LSTM 95.80 Yes The model itself is
complex and the CNN
used is a conventional
CNN with a basic
three-layered structure
that is not optimized
at all. Complex activ-
ities and their transi-
tions were not consid-
ered.



Chapter 3

Proposed Approach

3.1 Introduction

The architecture for the proposed approach consists of three deep neural net-

works: LSTM, BiLSTM, and CNN as depicted in Figure 3.1. Three D.L networks

are utilized due to the imposition of the decision fusion module in the proposed ap-

proach. The proposed approach requires at least three machine learning algorithms

to distinguish between the individual model results and efficiently implement the

decision fusion module.

3.1.1 Model Selection

Since we targeted the deep learning approach, therefore we utilized deep neural

networks. Specifically, the reason for the utilization of CNN was because CNN is

computationally efficient and can generate better results with lower computational

costs.

LSTM was utilized because they have been proven to perform the best on se-

quence data. As the data generated from the accelerometer and gyroscope is

sequence data, to that end, LSTM can efficiently extract patterns and longer se-

quences from the sequential data with higher accuracy. Similarly, BLSTM works

the same as LSTM but with the dual training of data in BLSTM, it trains faster

and shows better classification results. Each deep learning model has its unique

22
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characteristics, however, we can utilize any conventional machine or deep learning

model in this approach in a plug-and-play manner.

3.1.2 Feature Conversion

We utilized 2 publicly available datasets to benchmark the proposed approach.

One dataset includes basic and postural transitions whereas the second dataset is

only based on basic activities. Each of these datasets incorporates a set of features

against each activity instance. The raw tri-axial data from the accelerometer

and gyroscope sensors has been converted into statistical features by employing

FFT. FFT is a time-space domain algorithm that computes the discrete Fourier

Transform of a function.

The main functionality of the Fourier Transform function is that it converts the

domain of a signal from tie to frequency. This conversion is very useful in con-

volution operations and can speed up the training of CNN’s. On the other hand,

from a feature perspective, by converting the signal type from the time t frequency

variable, we can further generate several features against a similar type of value.

The raw sensor data is converted into a feature matrix and fed to these models

separately. Batch normalization is employed in all three networks to normalize the

output of each layer [76]. After the classification results are retrieved from each

model, a decision fusion module is initiated for the final classification. The details

of the proposed approach are provided in the following sections:

3.1.3 Long Short Term Memory (LSTM)

The LSTM used in this approach is a standard unit contrived of a memory cell,

input gate, output gate and a forget gate. The input is converted into a 1D

vector of y elements and fed to the model for training and the number of Neurons

is configured to be η. “Adam” is configured to be the adaptive optimizer as it

performs the best with sparse data. Moreover, the learning rate of µ is adapted

to achieve the best results while avoiding the loss of training input. A dropout
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Figure 3.1: Architecture of the Proposed System.

rate of κ is used to avoid over-fitting while maintaining the integrity of input and

output of neurons. Batch normalization is used after the fully connected layer to

normalize the input of every layer in the model and the Softmax layer classifies the

results. Table 3.1 shows all the hyper-parameters in LSTM and their respective

values for the two datasets involved. The flowchart for LSTM is shown in Figure

3.3. The final output is flattened and normalized which gets classified by the

Softmax in all networks.

Figure 3.2 shows the structure of the LSTM cell used. ft represents the forget gate

that tackles the amount of information to be kept and dropped. It is consumed by

the sigmoid function which scales the values between 0 and 1 thus dropping the

values (¡ 0.5). Ct represents the Input gate that quantifies the importance of the

next input (Xt) and updates the cell state. The new input (Xt) gets standardized

between -1 and 1 by the tanh function and the output gets point-wise multiplied

by Ct. Ct−1 represents the state of the cell at the previous timestamp which gets

updated after each time step. The information required to update the cell’s state

is gathered at this point and a bit-wise multiplication is carried out between the

previous cell state (CT ) and the forget vector. This gets followed by the bit-wise
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Figure 3.2: LSTM Unit

addition with the output of the Input gate and the cell state is updated. Finally,

the output gate (Ot) figures out what the next hidden state should be. The hidden

state encapsulates the information regarding previous inputs (Ht−1). The flow of

information through the following gates is mathematically shown in equation (3.2).

ft = sigmoid(Xt ∗ Uf +Ht−1 ∗Wf )

Ct = tanh(Xt ∗ UC +Ht−1 ∗WC)

Ot = sigmoid(Xt ∗ UO +Ht−1 ∗WO)

(3.1)

Where W and U represent the weights corresponding to their respective gates.

Initially, the input is fed through Xt and for the first set of instructions to the

LSTM, go straight to the Input gate (Ct). The input is standardized between 0

and 1 without any change in the size of the original input and forwarded to the

cell state (Ct−1). It is to be noted here that one the first run, w do not have

any information from the past on either the cell state (CT−1) or the hidden state

(Xt−1). Hence there are no point-wise operations performed for the first iteration.

This is the reason that in the first epoch, the accuracy of every neural network is

always very low. The same input is then transferred through the cell state and

the hidden state. On the second batch of input, we have the information from

the previous state available and after being fed to the LSTM cell, it is initially
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Figure 3.3: LSTM Flowchart

pointwise added with the information on Ht−1 which is also input to the forget gate

ft to update the cell state. This time, the newer input and the previous hidden

state also go through the update gate (lt) where they are normalized between -1

and 1 instead of 0 and 1. This reduces the load on the LSTM unit and avoids

over-fitting of the model.

The forget gate also dopes the values closer to 0 and only keeps the highest values

i.e., values higher than 0.5. The whole process is repeated for every batch of input

until we have a final output vector sequence from Yt which is classified into labels

by softmax. Before the final classification by softmax, batch normalization is also

applied to further regularize the LSTM model and a dropout layer is used to drop

random connections from each cell.

Table 3.1: LSTM Parameters

Parameter Value - Dataset A Value - Dataset B
y 561 60
ζ 0.002 0.002
η 100 50

Optimizer Adam Adam
κ 0.5 0.5

Epochs 400 100

3.1.4 Bidirectional Long Short Term Memory (BLSTM)

The BLSTM model utilized is based on dual recurrent layers. The BLSTM model

utilized is based on dual recurrent (LSTM) layers 3.4. The topmost layer is referred
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Figure 3.4: BLSTM Unit

to as the embedding layer that predicts the output for different time steps. The

second layer is the forward LSTM (first recurrent) layer that takes the input in the

forward direction. The third layer is the backward LSTM (second recurrent) layer

that moves the input in the backward direction. The First recurrent layer runs

the input from past to future while the second recurrent layer runs the input from

future to past. The second recurrent layer is provided with the reverse sequence

of input that preserves the future information. The additional training of data in

the BLSTM model shows better results compared to the LSTM’s.

The BLSTM hyper-parameters were kept the same as LSTM’s to avoid any in-

consistencies in the network and to track the changes in performance on multiple

datasets. The following BLSTM had 2 LSTM layers incorporated with ReLu ac-

tivation between them. The output from the second LSTM layer was flattened by

the FC layer and a random 50% connections were dropped by the dropout layer

to avoid overfitting in the network.

The dual training of data provides much better feature extraction and efficiently

distinguishes the relation between features. BLSTM parameters are shown in table

3.2. It can be observed from the table that the only different parameter in both

datasets is the input size. This was due to lesser number of features in dataset B.

A more detailed discussion on datasets is provided in the subsequent Chapters.

BLSTM’s input and output flow is shown in Figure 3.5.
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Table 3.2: BLSTM Parameters

Parameter Value - Dataset A Value - Dataset B
y 561 60
ζ 0.002 0.002
η 100 50

Optimizer Adam Adam
κ 0.5 0.5

Epochs 400 100

Figure 3.5: BLSTM Flowchart

3.1.5 Convolutional Neural Networks (CNN)

In this research work, a 2D-CNN is designed which takes input as a feature matrix

“I”. The CNN is comprised of an input layer, two hidden layers, a fully connected

layer, batch normalization layer, and a softmax layer for classification as shown in

Figure 3.6. Each hidden layer is a stack of “Convolution-ReLu-Maxpool” layers.

The convolution layer outputs a feature map which is passed through the “Recti-

fied Linear Unit (ReLu)” activation function (%). ReLu is mathematically shown

in equation 3.2. The output of ReLu becomes the input to the pooling layer.

Amongst various types of pooling strategies, max-pooling selects the maximum

element from each block in the feature map.

Max-pool is mathematically shown in equation 3.3 where F represents the max

pool filter size, S represents the stride length and I represents the input. The
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block to be covered depends on the pool size that is kept as γ. Padding is set to

“SAME” and the stride is set as “s”, such that the whole input block gets covered

by the filter. The step size for both, convolution and pooling layers, is kept the

same in all the hidden layers.

Figure 3.6: CNN Unit

f(x) = max(0, x) (3.2)

Pstart, Pend =
[S[ I

S
]− I + F − S]

2
(3.3)

The number of Kernels in the two convolution layers are α and β respectively. The

Kernel sizes are τ and ν respectively. Zero padding is added to fill the edges of

the input matrix and a learning rate of ζ is adopted. The input to the convolution

layer is of size h×w×d where h represents the height of the input, w represents the

width of the input and d refers to the dimension of the input. In this approach, the

dimension of input is 0 as we are dealing with sparse sensor data. The convolution

layer applies a filter of size fh × fw × d, where fh denotes the filter height and fw

represents the filter width. The convolution layer outputs a volume dimension or

feature matrix (fm) as shown in equation (3.4).
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fm = (h− fh + 1)× (w − fw + 1)× 1 (3.4)

The batch normalization layer is utilized after the fully connected layer to nor-

malize the data in all the previous layers and the output is sent to the softmax

layer for classification. The mean and variance calculation in batch normalization

is shown in equations (3.5),(3.6), where x denotes the batch sample, µB represents

the batch mean, and σ2
B represent the mini-batch variance. Table 3.3 shows all

the parameters involved in CNN and their respective values. Figure 3.7 portrays

the input flow in CNN.

µB =
1

m

m∑
i=1

xi (3.5)

σ2
B =

1

m

m∑
i=1

(xi − µB)2 (3.6)

Table 3.3: CNN Parameters

Parameter Value - Dataset A Value - Dataset B
I 24x24 8x8
s 1 1
α 8 8
β 18 18
τ 2x4 2x4
ν 2x8 2x8
γ 2 2
% ReLu ReLu
ζ 0.002 0.002

Epochs 50 50

3.2 Model Implementation

Input is fed to each model separately and activities are classified based on their

respective labels. LSTM is utilized for its ability to achieve superior results in

sequence-to-sequence classification. The LSTM is comprised of an input layer,

hidden layers, and output layer. The hidden layers encapsulate memory cells and
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Figure 3.7: CNN Flowchart

gated units. The gated units are composed of input gate, forget gate, and output

gate. A feature vector is fed to the input gate which contains an update gate

that decides which values to update and a tanh layer that creates a vector of new

values. The forget gate sorts out how much information can be aggregated from

the previous gate into the memory cell. Sigmoid activation is used to scale the

output from the gates between 0 and 1, to speed up the training and reduce the

load on the network. The results of the output gate are generated based on the

cell’s state and flattened by the fully connected layer. All the parameters and

input to layers are scaled and standardized by the batch normalization layer and

the final output is classified by softmax.

The feature vector is passed to a BLSTM network. BLSTM has the same param-

eters and works on the same principles as an LSTM. The only point of difference

is that in BLSTM, the input is fed to the model twice for training, once from

beginning to the end and once from the end to the beginning. Therefore, by uti-

lizing BLSTM, we can preserve information at any time at a point in the future

and past which generates a refine feature map. Furthermore, BLSTM speeds up

the training process and this dual training of data better classifies the activities

compared to LSTM. The final feature map is flattened and classified by softmax.

For the precise conversion of data into a matrix for CNN, zero padding is added to

the input. Convolutions are performed on the matrix and weights are distributed

amongst the filters. A bias is set to update the value of weights after a complete
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iteration. The output from the convolution layer is passed through the ReLu to

convert all the negative values in the resultant feature matrix to zero. Aside from

ReLu, leaky ReLu is also used which is more balanced compared to the simple

ReLu, however, the training does not stop even when the weight becomes 0 thus

the training takes longer. The output of ReLu is input to the max-pool layer to

reduce the size of the feature matrix and the overall parameters of the hidden

layer. Amongst several pooling techniques; max-pool is the most effective while

dealing with sensor data hence utilized in our approach. The feature map from

the max pool layer is input to the second hidden layer, and the whole process is

repeated twice. The final feature matrix is flattened by a fully connected (FC)

layer to form a sequence vector. After the FC layer, the batch normalization layer

is used to normalize the output of all layers of the CNN. The Softmax layer pre-

dicts polynomial probability distributions and generates categories based on these

predictions. The sum of these probabilities is distributed within all the classes

such that the sum of all the probabilities becomes 1.

Softmax is utilized in all models for its ability to generate statistical probabilities

alongside classes. These probabilities are exerted in the decision fusion module

for final classification. After all three networks are trained, the observations (in-

stances) corresponding to each activity are input to the models and each network

returns the predicted classes along with the class probabilities.

The predictions are then inter-compared and summed in a decision fusion module

and final classification results are generated. The decision fusion module provides

equal importance to each network and its predictions. The performance of the

approach is then calculated on different benchmark parameters.

We have utilized a 2D CNN in our approach as we wanted to calculate the execu-

tion time of the proposed and baseline approach. To that end, we wanted to make

our approach as fast as possible in terms of training time. Initially, we utilized a

1D CNN and calculated the accuracy and execution time for it. The same pro-

cess was repeated for a 2D CNN as well. On a detailed comparison based on 10

iterations for both 1D and 2D CNN, we found almost the same accuracy values.

However, in the case of execution time, we found the 2D CNN to be much faster
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compared to the 1D CNN. To that end, we utilized the 2D CNN in the proposed

approach. Moreover, since CNN performs the best on image type data which is

usually 2D or 3D, hence applied in the proposed approach. One may think that

image data has nothing to do with the proposed approach, however it should be

observed that the one dimensional sensor data is converted to an image like ma-

trix where each row from the datasets have been converted and then input to the

model for training and testing.

3.2.1 Decision Fusion

The decision fusion module prioritizes the selection based on the class probabilities.

Each returned class accommodates a probability value between 0 and 1 within all

three networks. The resultant probabilities of each returned class from all networks

are summed respectively and the highest value-based class is designated to be the

final recognized class such that:

Let P 1
i represent the probability of 1st activity class in the ith deep learning model,

then the probabilities of the recognized activities (P 1, P 2, ...., PM) in (P1, P2...., Pn)

networks can be defined as P 1
total, P

2
total, ....., P

M
total respectively, where n represents

the total number of deep learning networks in the model. Then the sum of all the

probabilities against each instance can be defined as 3.7:

P j
total =

n∑
i=1

P k
i , (3.7)

where j= 1, 2, . . . , M. The cumulative probability of same resultant classes against

each instance is calculated and compared with the cumulative probability of other

resultant classes.

For the function f : g → j, where g is a subset of j and contains the sum of same

predicted classes from each model; j represents the set of all generated probabilities

from all networks. k takes the argument max of all the values in g and returns

the classified activity as shown in equation 3.8. Finally, the class associated with
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the highest probability value k is returned as the recognized class. The algorithm

for decision fusion is shown in Algorithm 1.

g = [P 1
total, P

2
total, P

3
total, ...., P

M
total]

k = argmax
g

f(g)

(3.8)

Algorithm 1 initially shows three trained networks as CNet, LNet, and BNet,

where the first one represents the CNN trained network, the second one represents

the LSTM trained network and the third one represents the BLSTM trained net-

work. After all the networks are trained, the Testing data is loaded in a variable

X, and initially the first instance X[1] is fed to each network.

Each network returns the classification results in the form of labels and their

statistical probabilities. The highest probability-based class from each network

along with its probability is stored in the ConfidenceArray and CategoryArray

respectively. Then the LSTM predicted class’s probability is stored in the variable

A1, the BLSTM’s probability against the LSTM class is stored in A2 and the

CNN’s probability against the LSTM class is stored in variable A3.

The same process is repeated for BLSTM’s and CNN’s predicted class and all the

probabilities are stored in B1, B2, B3, C1, C2, C3. The sum of all the probabili-

ties against LSTM’s label is stored in A, the sum of all the probabilities against

BLSTM’s label is stored in B and the sum of all the probabilities against LSTM’s

label is stored in C.

The sum of probabilities is stored in a newer matrix K and the argument max

is calculated for this matrix. The maximum value along with its original label is

stored in the array as [M, I] where M represents the maximum probability and I

represents its respective label. This resultant label/class is considered to be the

recognized activity and the whole process is repeated for the second instance in

X.
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Algorithm 1 Algorithm for the Ensemble Decision Fusion

Ensure: train.CNN Network = CNet
Ensure: train.LSTM Network = LNet
Ensure: train.BLSTM Network = BNet

Load TestingFeatures = X
Input X to each network separately
for i← 1 to X do

[LSTMclass,LSTMprob]=classify(LNet,LFeatures(i))
[BLSTMclass,BLSTMprob]=classify(BNet,BFeatures(i))
[CNNclass,CNNprob]=classify(CNet,CFeatures(i))
ConfidenceArray = [max(LSTMprob) max(BLSTMprob) max(CNNprob)]
CatogoryArray = [LSTMclass BLSTMclass CNNclass]

end for

Probability Calculation:
A1← LSTMprob(LSTMclass)
A2← BLSTMprob(LSTMclass)
A3← CNNprob(LSTMclass)

B1← LSTMprob(BLSTMclass)
B2← BLSTMprob(BLSTMclass)
B3← CNNprob(BLSTMclass)

C1← LSTMprob(CNNclass)
C2← BLSTMprob(CNNclass)
C3← CNNprob(CNNclass)

return A← A1 + A2 + A3
return B ← B1 +B2 +B3
return C ← C1 + C2 + C3

{A,B,C returns the summed probability of resultant class from each network}
Argument Max:

k ← [A B C]
{k returns the argument max of A,B and C}
{I represents the respective deep learning model}
[M, I]←max(k)
if I ←1 then
ClassifiedActivity(i, :)← LSTMclass

end if

if I ←2 then
ClassifiedActivity(i, :)← BLSTMclass

end if

if I ←3 then
ClassifiedActivity(i, :)← CNNclass

end if

{ClassifiedActivity populates a list of Activities }
return Classified Activities
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A dry run of the decision fusion module is shown in the subsequent section. The

benefit of the proposed approach and decision fusion module is that it will generate

good results on any type of data. Whether it be image data, textual data, or sparse

data, the proposed approach incubates multiple deep learning models which can

be used in a plug-and-play manner. To that end, even if one algorithm performs

best on a certain type of data while the other only shows average results, e.g., if

we want to process natural language processing cases, then the literature signifies

the importance and superior performance of LSTMs for this particular domain.

Even if CNN does not manage to return superior results, LSTM and BLSTM

would cover that drawback and will generate results with higher accuracy which

will impact the overall accuracy of the proposed approach. LSTM’s show superior

performance where time-series data is concerned which itself is a daunting task

because there can exist several time lags between time series data.

The main motivation for the usage of LSTM is the handling of vanishing gradi-

ents in traditional RNNs. In the proposed approach we have utilized the most

basic LSTM structure, however, there exist multiple LSTM variants such as deep

convolutional LSTMs, peephole LSTMs, peephole convolutional LSTMs, etc. The

usage of each of these variants depends on the type and quantity of data that we

are dealing with. Aside from conventional LSTMs, convolutional LSTMs are also

widely used due to their exceptional performance in variety of tasks such as deep

feature extraction and unsupervised learning.

Seemingly, LSTM/BLSTM shows superior performance while dealing with time-

series data, robot control systems, natural language processing, human action

recognition, and music composition, etc. On the other hand, CNN outclasses

LSTM in image classification, video classification, facial recognition, search en-

gines, and healthcare data science, etc.

3.2.2 Results from Decision Fusion

Before diving into the detailed analysis of results from the datasets, let’s assume

Figure 3.8 as an illustration of a test instance on the proposed approach as shown
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below.

Figure 3.8: Illustration of the Decision Fusion Module

Suppose we input an unknown activity x to our model. We already have 3 net-

works (LSTM, BLSTM, and CNN) trained on the training data. Each network

will generate a set of probabilities (with a weighted sum of 1.0 for all the class

probabilities) for each class where the class associated with the highest probability

value will be the predicted class from each network respectively. From the figure

above, it can be observed that the LSTM network predicted x to be Activity 1,

BLSTM predicted it to be Activity 2 whereas CNN predicted the activity to be

Activity 3.

We have considered a worst-case scenario where each model generates a different

prediction. In such a case, the Decision Fusion module fetches the predicted activ-

ity label from the first network, i.e., LSTM, and creates a variable L representing

LSTM prediction. The module then fetches the probabilities of all the other net-

works in the model against the same label (in this case, label 1). The probabilities
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of different networks (including LSTM’s) against the LSTM predicted label are

summed and stored in L.

Similarly, the decision fusion module fetches the BLSTM predicted label (in this

case 2) and its probabilities from LSTM, BLSTM, and CNN and saves the sum of

probabilities in a new variable B representing the BLSTM prediction. After this

process is finished, the decision fusion module stores the weighted sums (L, B,

and C) in a 1D matrix (in this case Arg. Max) and calculates the argument max

of this matrix. Argument max returns the maximum value in the matrix along

with its original label. Based on the output of Arg.Max, the unknown activity x

is recognized in this approach.



Chapter 4

Experimental Results

4.1 Datasets

The choice of dataset plays an important role in the overall implementation and

performance of a machine or deep learning network, hence selection of a dataset

and generation of the dataset is a challenge on its own.

In the context where a limited amount of data is available and the data is not

too dense, M.L is typically used. It will not be far stretched to make a statement

that M.L algorithms are originally modeled to deal with supervised learning i.e.,

dealing with completely labeled data. In state-of-the-art M.L models, it is also

possible to input unlabeled data with a semi-supervised learning-enabled envi-

ronment, however to that end, the raw or informal data has to be converted or

either transformed. This transformation can either be a dimensional transforma-

tion or standardization. Whereas the conversion of data refers to the generation

of features such as mean, median, maximum, average, standard deviation, etc.

This conversion can be carried out by using Fast Fourier Transformation (FFT)

and input to the machine learning models by using the sliding window method.

Conventional D.L models are based on deep neural networks; their performance

is strictly dependent on the quality of data such that they require a huge amount

of data for precise training and this may sometimes cause overfitting as well. e.g.

CNN’s can extract features from sensor data, however, in the case of sparse data,

39
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they require a huge pool of training data for accurate classification. Moreover,

if the training data is too similar, that causes overfitting in the neural networks.

They can efficiently extract short-term dependencies but fail to extract longer de-

pendencies from longer data sequences. To that end, LSTMs are used which are

way ahead of CNNs in terms of extracting long-term dependencies and have su-

perior performance in sequential applications like in natural language processing.

Two publicly available datasets are utilized for the experimental analysis of the

proposed model. The following two datasets are selected based on the inclusion of

transitional activities in the case of the former one and to validate the performance

of the proposed approach with lesser input features for the latter one, respectively.

Raw sensor data is transformed into a feature matrix for both datasets and then

fed to the model. Next, we describe the two datasets that are as follows:

4.1.1 Dataset A: Human Activities and Postural Transi-

tion Dataset (HAPT)

HAPT [77] is an extended version of the UCI HAR dataset [78] and accommodates

6 additional postural transitions alongside 6 basic activities. Moreover, the dataset

contains the unprocessed raw data composed of triaxial signals generated from a

Samsung Galaxy II cellphone’s embedded accelerometer and gyroscope sensors.

The dataset also includes the fully processed data based on a 561-feature vector

which is divided into a training set and test set. The gathered data is based

on an experiment that involved 30 users performing 12 activities (6 basic and 6

transitions). The basic activities recorded are “walking, walking upstairs, walking

downstairs, sitting, standing and lying”. And the transition activities are “stand

to sit, sit to stand, sit to lie, lie to sit, stand to lie, and lie to stand”. The number of

instances for transition activities are relatively lesser compared to those for basic

activities because postural transitions are hard to record as they are physically

tiring. An overview of the instances in dataset A is shown in Table 4.1.
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Table 4.1: Human Activities and Postural Transitions Dataset (Dataset A) -
Overview

Activity Training Instances Test Instances
Walking 1226 496

Walking Upstairs 1073 471
Walking Downstairs 987 420

Sitting 1293 508
Standing 1423 556
Laying 1413 545

Stand to Sit 47 23
Sit to Stand 23 10

Sit to Lie 75 32
Lie to Sit 60 25

Stand to Lie 90 49
Lie to Stand 57 27

The dataset was divided into a 70-30 proportion, where 70% was allocated for the

training of networks and 30% for the testing of networks. It can be observed that

the total number of instances for the activity ’Walking’ sum up to 1722, however

on the division between training and test set, the total instances are divided into

1226 and 496 for training and testing respectively. Similarly, other activities and

their instances have been divided based on the same proportion. However, it can

be observed that the number of instances for first 6 activities and last 6 activities

are very unbalanced.

The choice of the HAPT data-set was due to the inclusion of 6 postural transitions

alongside basic activities. Moreover, the dataset contains fully processed data

where triaxial signals have been transformed into statistical features by using Fast

Fourier Transform (FFT) which includes mean, standard deviation, max, min, etc.

It is to be noted that FFT only converts the variables from time to frequency

domain which can lead to further feature extraction. A sample of the original

data from the HAPT dataset is shown in table 4.2. The table shows the sample

starting and ending points for each activity against a certain participant marked

as Exp. ID. Each activity is represented by its respective label. The starting and

ending point values are the duration in several seconds. A sample of the actual

features in dataset A is shown in Figure 4.1. Each value in the block represents a

statistical feature extracted from the time and frequency domain variables. The
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features were converted from a .txt file into a .csv file for separation and padding

before feeding them to neural networks. Figure 4.2 shows the actual training labels

from dataset A.

Table 4.2: Activity Labels & Original Data

Exp. ID User ID Activity Label Starting Point Ending Point
2 1 2 15920 16598
2 1 3 16847 17471
2 1 2 17725 18425
3 2 5 298 16598
3 2 7 1399 1555
3 2 4 1686 2627
3 2 8 2628 2769
3 2 5 2770 3904
3 2 11 3905 4322

Figure 4.1: Sample of Actual Features from Training Data (Dataset A)

4.1.2 Dataset B: HumanActivity Dataset

This dataset [79], [80] contains 24,075 observations against 5 human activities

(Sitting, Standing, Walking, Running, and Dancing). It can be observed that

three activities in this dataset are similar as the ones in dataset A, however, 2

activities are different. Each observation corresponds to 60 features extracted from
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Figure 4.2: Sample of Actual Labels from Training Data (Dataset A)

raw triaxial data generated through a smartphone’s accelerometer and gyroscope

sensor. The variables involved are as follows; ’actid’ - is a vector composed of

activity Id’s in the form of integers ranging from 1 to 5. ’actnames’ - is a vector

composed of the activity names corresponding to their respective activity Id’s.

’feat’ - is a feature vector composed of 60 features against every observation.

’featlabels’ - is a list of names corresponding to every feature. It is to be noted

that the original tri-axial data has been converted into time-frequency domain

variables in this dataset. The choice of this dataset was based on the availability

of a vast pool of observations against five basic activities. This lead to a better

validation of the proposed approach on basic activities. The dataset was divided

into a 90-10 proportion for training and testing respectively. It should be noted

that unlike dataset A, which was divided into a 70-30 proportion, this dataset is

divided into a 90-10 proportion. The reason is that the number of instances for

each activity in this dataset are way greater compared to those in dataset A. This

dataset is very refined and contains more instances but lesser features. Therefore

to keep a somewhat balanced number of instances for testing, such proportion was

considered. An overview of the instances in dataset B is shown in Table 4.3.
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Table 4.3: HumanActivity Dataset (Dataset B) - Overview

Activity Training Instances Test Instances
Sitting 5265 585

Standing 5598 622
Walking 4856 540
Running 3561 395
Dancing 2388 267

From the table above, it can be observed that the total number of instances for the

’Sitting’ activity was 5850, however on the division between training and testing

sets, the number of instances got divided into 5265 and 585 for training and testing

respectively. The same division had been carried out for all the activities and their

instances in the dataset.

A sample of actual features in dataset B is shown in Figure 4.3. Each value in the

block represents a statistical feature. The features were converted from a .txt file

into a .csv file same as dataset A for separation and padding before feeding them

to neural networks. Figure 4.4 shows the actual training labels from dataset B.

Figure 4.3: Sample of Actual Features from Training Data (Dataset B)
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Figure 4.4: Sample of Actual Labels from Training Data (Dataset B)

4.2 State-Of-The-Art Approaches

Table 4.4 shows the average recognition rate (accuracy) of various transition-aware

approaches. It can be observed that the standard deviation-based trend analysis

fused with an SVM can achieve satisfactory results (80%) and achieve almost the

same accuracy (81.62%) as the SVM infused with a transition event detection

module. Both approaches are based on conventional machine learning models and

fail to achieve increased performance on relatively bigger datasets. Comparatively,

gradient boosted decision trees outperformed (94.90%) both approaches by calcu-

lating the sum of weights from dual training of correctly and incorrectly classified

data. The approach is based on a fine-tuned SVM, however, the performance

and the accuracy of the proposed approach degrades as the data is increased.

This is called the curse of dimensionality when too much data tunes the model

to memorize data and causes over-fitting. Consequently, all three SVM exhibits a

common limitation corresponding to decreased performance with this increase in

data. To fill the gaps, the deep learning approach utilizing multiple LSTM units,
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Table 4.4: Comparison of the Proposed Approach with State-Of-The-Art Ap-
proaches in Terms of Average Accuracy.(Dataset A)

Approach Average Accuracy(%)
STD-TA [66] 80.00

SVM-TED [67] 81.62
LSTM [72] 89.00
GBDT [69] 94.90
DBN [68] 95.80

CNN-LSTM [73] 95.80
Proposed 96.11

to classify transitional activities, has achieved an accuracy of 89% as compared to

conventional SVM approaches. However, the deep structure of LSTM with mul-

tiple networked cells slowed down the overall model, causing a vanishing gradient

and have increased the computational cost. To this end, another approach utilized

DBN to handle the vanishing gradient problem and extracted features from raw

sensor data. The extracted features were refined by a component analysis Kernel

and analyzed by the LDA unit. The LDA unit made substantial contribution in

the final accuracy of this approach however it only works best when the amount

of data is relatively lesser. Experimental evaluations have shown the DBNs to be

much superior with a 95.80% accuracy. DBNs show superior performance in deep

feature extraction. However, DBNs have become obsolete due to their complex

structure that has been replaced by a much simplified ReLu unit, which has been

introduced to handle the vanishing gradient problems in neural networks.

To overcome the limitations of the fore-mentioned approaches, the CNN-LSTM

approach demonstrated a pipelined model by feeding the CNN extracted features

to LSTM for refinement and feature fusion. The predicted results showed supe-

rior and equal results (95.80%) compared to the fore-mentioned state-of-the-art

research works. Every approach has a significance of its own, however lacking

either in scalability, i.e., having a complex structure, or any irregularity in the

pipeline architecture can halt or slow down the system. Suppose if the features

extracted from the first model in the pipeline architecture are not quality features

and fail to show better results, then the second algorithm in the pipeline flow will

fail to extract quality features and final feature matrix will be meaningless. To

that end, the proposed approach brings forward a non-pipeline flow of algorithms
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which works without any dependency on each other and shows results based on a

biased view.

The above table shows the individual activity accuracy, precision, recall, and f-

measure calculated on dataset A that incorporates transitional activities alongside

basic activities 9 (a total of 12 activities, 6 basics, and 6 transitions respectively).

The table below shows the same for dataset B which incorporates basic activities

only. The difference in the performance parameters values can be observed in both

of the tables. From the dataset samples, it can be observed that for dataset B we

have abundant instances per activity in dataset B so the networks had more data

to train on. This leads to a robust training of networks on a higher number of

instances. Moreover, deep neural networks show the best performance when the

number of observations or datasets, in general, is relatively large. To that end,

training on a smaller number of features and a larger dataset proved to show much

better results compared to that of being trained on a smaller dataset with a higher

number of features.

4.3 Quantitative Analysis

4.3.1 Individual Model Results

Before incorporating all employed neural networks into the architecture, we im-

plemented and tested each model individually. To calculate the overall accuracy

of each model individually on dataset A and to show the difference in results

compared to the decision fusion module, we initially fed the training and testing

data to the models with different hyper-parameters. The results based on average

accuracy for each model are explained in the subsequent sections.

4.3.1.1 LSTM Accuracy

The LSTM model takes as input a one-dimensional feature vector and processes

the input through a single LSTM cell. To keep the complexity of the overall

architecture less, only a single LSTM cell was used. Moreover, since we had an
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abundant number of features against each instance in the datasets, one LSTM cell

managed to achieve better results on test data in a shorter amount of time. The

average execution time for ten complete iterations was calculated to be 8 units

where a single unit of time represents one minute. The results on testing data are

shown in Table 4.5.

It can be observed that the number of epochs was initially configured to be 100

because of the longer sequences of input data. An increment of 100 epochs was

initially made which showed a drastic increase in the accuracy up to 300 epochs.

After the 300 thresholds, the increment was configured to be 50 up to 450 epochs.

It can very well be observed that the accuracy started decreasing on the men-

tioned number of epochs, hence it was lowered in units of 10 and we managed to

achieve the highest accuracy with the number of epochs configured to 400. For

the BLSTM, a similar experimental trial was conducted and the number of epochs

were configured and will not be discussed in the subsequent section.

The table shows the average accuracy on one dataset as the proposed approach

was mainly to be benchmarked on dataset A due to the inclusion of transition

activities.

Table 4.5: LSTM Average Accuracy on Different Epochs - Dataset A

Epochs Accuracy(%)
100 91.12
200 92.64
300 92.81
350 94.01
400 94.77
450 94.12
420 94.18

4.3.1.2 BLSTM Accuracy

In our BLSTM unit, we utilized two LSTM layers. The initial input to the first

LSTM layer was also a one dimensional feature vector which was reprocessed in

the second LSTM cell. The results on testing data showed slightly better results

compared to LSTM in terms of average accuracy as shown in Table 4.6.
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Table 4.6: BLSTM Average Accuracy on Different Epochs - Dataset A

Epochs Accuracy(%)
100 93.66
200 93.91
300 93.89
350 94.64
400 94.98
450 94.78
420 94.72

It can be observed from the table above classification accuracy of BLSTM is rel-

atively higher compared to LSTM’s. This is because of the dual training of data

in bi-directional LSTM. Moreover, bidirectional BLSTM takes lesser time to train

compared to LSTM, making it computationally less expensive in terms of time

compared to LSTM.

4.3.1.3 CNN Accuracy

In the CNN model, we initially implemented a 1D CNN. The classification re-

sults showed almost the same accuracy as achieved in the 2D CNN. However, the

execution time taken by the 2D CNN was lesser on the same number of epochs

compared to a 1D CNN. The only difference in a 1D and 2D CNN is the movement

of convolution kernel on the input array and matrix. This was achieved due to the

fact that a 2-dimensional kernel covered more blocks on each input matrix and

performed faster convolutions compared to a one-dimensional kernel. This could

have been overcome in a one-dimensional CNN by increasing the size of the kernel,

however, this reduced the overall classification accuracy of the CNN model. Due

to the availability of longer sequences in the datasets against each instance, the

number of kernels and their sizes had to be configured in a balanced proportion

for the model to be able to extract quality features from the input. As one of the

main contributions of the proposed approach was to be computationally efficient

in terms of time, this led to the utilization of the 2D CNN. Moreover, the clas-

sification results on testing data showed superior results compared to LSTM and

BLSTM in terms of average accuracy and execution time, as shown in Table 4.7.

There also exists a 3D CNN, however it is strictly used for video-based datasets

or cases where real time video data is being utilized.
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Table 4.7: CNN Average Accuracy on Different Epochs - Dataset A

Epochs Accuracy(%)
100 95.33
150 94.78
90 95.37
80 95.46
70 95.19
60 95.51
50 95.55
40 95.11

It can be observed from the table above that CNN showed better results in a

lesser number of epochs compare to LSTM and BLSTM. Initially, the number

of epochs was configured to be 100, the same as LSTM and BLSTM. However,

on an increment of 50 epochs, the accuracy started decreasing. To calculate the

highest accuracy value, we decremented the epochs by 10 till the number of epochs

reached 40. After 50 epochs, the accuracy again started to decrease. To that

end, the final number of epochs were selected to be 50 which showed the highest

accuracy (95.55%) on test data. The overall number of epochs play an important

role in the training of a network. If the number of epochs is too high, the model

may suffer from overfitting, in a similar manner, if the number of epochs are

too low, the model suffers from underfitting and the training accuracy degrades.

Hence it is best to utilize deep learning models when the number of instances in

training data are in abundance. If very limited amount of data is available, then

it is better to use some conventional machine learning algorithm which keeps the

overall architecture lightweight and computationally efficient.

LSTM and BLSTM were utilized in this approach due to their exceptional per-

formance in sequence-to-sequence classification alongside sequence to label classi-

fication. As accelerometer and gyroscope generate sequence data, hence we have

utilized LSTM and BLSTM in our approach. This sums up the reason for the

utilization of these three networks in the proposed approach. It is to be noted

that for a different type of data, i.e., image, video, textual, etc., we can incorpo-

rate multiple machine learning algorithms in the proposed approach in a plug and

play manner. We can also utilize a three dimensional CNN for extracting video

sequences from real time video data.
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Table 4.8: Accuracy, Precision, Recall and F-measure of Various Activities -
Dataset A

Activity ID Accuracy(%) Precision(%) Recall(%) F-measure(%)
A1 99.34 97.00 99.00 98.00
A2 99.11 98.00 96.00 97.00
A3 99.56 99.00 98.00 98.00
A4 98.13 96.00 92.00 94.00
A5 98.36 94.00 97.00 95.00
A6 100.00 100.00 100.00 100.00
A7 99.49 62.00 78.00 69.00
A8 99.97 91.00 100.00 95.00
A9 99.75 84.00 90.00 87.00
A10 99.59 73.00 76.00 75.00
A11 99.46 80.00 82.00 81.00
A12 99.46 70.00 56.00 62.00

Table 4.9: Accuracy, Precision, Recall and F-measure of Various Activities -
Dataset B

Activity ID Accuracy(%) Precision(%) Recall(%) F-measure(%)
B1 99.92 100.00 100.00 100.00
B2 99.88 100.00 100.00 100.00
B3 99.58 99.00 99.00 99.00
B4 98.71 96.00 96.00 96.00
B5 98.67 93.00 95.00 94.00

4.3.2 Final Classification Results

Quantitative analysis of the proposed framework has been carried out against

state-of-the-art approaches using the metrics: Accuracy, Precision, Recall, and

F-measure. The resultant metrics of the recognized activities from ‘dataset A’ are

shown in Table 4.8. The activity id labels “A1, A2, A3, A4, A5, A6” represent the

basic activities “Walking”, “Walking Upstairs”, “Walking Downstairs”, “Sitting”,

“Standing”, “Lying” respectively; and the labels “A7, A8, A9, A10, A11, A12” rep-

resent the postural transitions “Stand to Sit”, “Sit to Stand”, “Sit to Lying”,

“Lying to Sit”, “Stand to Lying”, “Lying to Stand” respectively. It can be ob-

served that the basic activities (A1, ..., A6) achieve average precision of 97.33%,

average recall of 97%, and an average F1 score of 97%. However, transitional activ-

ities (A7, ..., A12) have shown reduced average precision of 76.66%, average recall

of 80.33%, and an average F1 score of 78.16%. These results are not consistent

with the results obtained for the basic activities.
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The reason is the unavailability of abundant observations in the dataset for tran-

sition activities which cause over-fitting. Overfitting is the phenomenon of memo-

rizing the seen data (in the case of the small dataset) and consequently, the model

would be unable to generalize on unseen data. Compared to basic activities, the

total number of observations recorded for transition activities is significantly lesser

which caused our proposed model to over-fit. Deep neural networks perform better

when the volume of data is larger, however, in this case, the volume of transitional

activities varied a lot compared to basic activities which lead to less-than-stellar

results. However, the accurate final classification can be observed by the average

accuracy of 96.11% which outperformed all the referenced state-of-the-art methods

and portrays the overall performance of the proposed approach. Compared to the

baseline work, the accuracy gain may not seem much significant, however, the main

idea behind the proposed framework was that equal and also higher accuracy can

be achieved by not following the traditional pipeline architecture and implement-

ing multiple machine learning models simultaneously. We also showed that we can

integrate multiple machine and deep learning models as per the requirement if the

hardware resources are in abundance.

The resultant metrics of the recognized activities from ‘dataset B’ are shown in

Table 4.9. The activity id labels “B1, B2, B3, B4, B5, B6” represent the basic

activities “Sitting”, “Standing”, “Walking”, “Running”, “Dancing” respectively.

It can be observed that the classified activities show an average precision of 97%,

average recall of 98%, and an average F1 score of 97.80%. The proposed approach

showed an average accuracy of 98.38% with a higher recall, precision, and F1

score compared to dataset A. The comparative analysis of basic activities in both

datasets shows superior classification results on dataset B. The reason is the higher

number of observations for individual activity in dataset B compared to dataset

A. This leads to robust training of networks in the latter case. Therefore, even

though the number of features per observation was significantly more in dataset A,

results based on dataset B were superior. Table 4.10 shows the average accuracy

of the proposed approach evaluated on the two publicly available datasets. These

datasets were selected based on the inclusion of transitional activities and due to

the availability of benchmark datasets.
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Table 4.11 shows the confusion matrix corresponding to the final classification of

activities from dataset A. The diagonal bold entries represent the correctly identi-

fied instances of the activities A1, A2, ..., A12 respectively. It can be observed that

490 out of 496 instances of A1 were correctly identified in the final classification,

meanwhile, 3 instances were predicted to belong to class A2 and 3 from class A3.

Similarly, 12 instances from A2 and 3 instances from A3 were incorrectly predicted

to belong to A1. To this end, the column entries (excluding the Bold ones) repre-

sent the incorrectly classified instances of those particular activities (Bold entries)

and the row entries represent the incorrectly classified instances of the bold entries.

Moreover, it can also be observed that the number of observations for transition

activities is considerably lesser compared to basic activities. Similarly, Table 4.12

shows the confusion matrix relating to the final classification of activities from

dataset B, where the diagonal entries represent the correctly classified instances

of the activities B1, B2, ..., B5.

It can be observed let the classification accuracy of activities on dataset B is greater

than that of the activities on dataset A. The reason is that the total number of

instances in dataset B is much greater than the total number of instances in dataset

A. The total number of activities in dataset A was 12 and the number of instances

for those activities, both training, and testing summed up to approximately 11000.

Moreover, the total number of instances for transition activities was way lesser

compare two basic activities. Meanwhile, the number of activities in data Set B

was 6, however, the total number of instances for those activities summed up to

approximately 24000. This led to a robust training of networks on dataset B. For

a time-based comparison, the CNN-LSTM approach was reproduced according to

the base parameters defined in the approach. The raw data were converted into a

feature matrix and fed to CNN for feature extraction. The CNN employed was a

multilayered network with three hidden layers. Each hidden layer was a stack of

convolution and ReLu layers. The output feature matrix from the third pooling

layer was passed to LSTM for further feature filtration. LSTM trained separately

on input as well and the LSTM extracted features were fused with CNN features

to create a robust trained model. Finally, the test set was input to the model for

validation and benchmark. The experimental results achieved similar accuracy as
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shown in the referenced approach. The baseline accuracy hand computational time

was recorded on the same hardware requirements as mentioned in the referenced

paper. The computational environment may be different however we tried our

best to reproduce the baseline work as it is.

Furthermore, a comparison of the average execution time of the proposed model

was carried out with the CNN-LSTM approach on dataset A. Heading forward

with explanation, we have represented 5 minutes (300 seconds) as 5 units of time.

Figure 4.5 exhibits the difference in execution time of both approaches on 10

iterations(X-axis) where a single iteration refers to one complete execution (pre-

dictions) of each approach. Moreover, each label (0, 5, 10, ..., 60) on the Y-axis

represents a difference of five units. It can be observed for the first iteration

that the CNN-LSTM approach took 52 units of time for one complete execution

whereas the proposed approach took only 18 units of time while employing three

deep learning models. Similarly, after 10 iterations, the average execution time for

the CNN-LSTM approach is calculated to be 51.50 whereas the proposed approach

demonstrates an average execution time of 17.20 units. The number of iterations

were kept as 10 because after 10 iterations there was no such change in the exe-

cution time. This shows that the proposed approach is computationally efficient

in terms of average accuracy and execution time compared to baseline work.

The execution time was only calculated on dataset A as the baseline approach had

utilized the same dataset in their architecture. Moreover, a detailed comparison

had to be made with the baseline approach only and the parameter ‘accuracy’ was

not enough to emphasize the results of the proposed approach on the baseline work.

To that end, we reproduced the baseline approach according to the mentioned

parameters. A similar hardware environment was also set up and utilized to

precisely reproduce the results without any deviation. The software tools may

be different as the one used by the baseline approach was not mentioned in the

text, however, the language and the machine learning libraries utilized were the

same.

A TensorFlow environment in Python was utilized with 16GB of ram and a dual

core processor in the baseline and the proposed approach. The software tool
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Figure 4.5: Execution Time of The CNN-LSTM and Proposed Approach
(Dataset A)

Table 4.10: Average Accuracy of The Proposed Approach on Two Datasets

Average Accuracy(%)

Proposed Approach
Dataset A Dataset B

96.11% 98.38%

utilized was the ‘Pycharm - community edition’ in the proposed approach. We

also visualized the baseline approach and the proposed approach in MATLAB

software.

The overall results on both tools showed a slight variance in results. To that end,

we strictly followed the baseline environment for the overall experimentation and

achieved the same results.

Moreover, the selection of the baseline paper was based on the most recent works

in human activity recognition related to deep learning environment. This fact led

to the filtration of a few state-of-the-art works and the baseline was selected as it

provided in-depth detail of implementation as well.
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Table 4.11: Confusion Matrix of Activities—Dataset A.

Predicted

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A
ct

u
al

A1 490 12 3 0 0 0 0 0 0 0 0 0

A2 3 454 7 0 0 0 1 0 0 0 0 0

A3 3 1 410 0 0 0 0 0 0 0 0 0

A4 0 0 0 467 15 0 2 0 0 0 1 0

A5 0 0 0 35 540 0 1 0 0 0 0 0

A6 0 0 0 0 0 545 0 0 0 0 0 0

A7 0 4 0 6 1 0 18 0 0 0 0 0

A8 0 0 0 0 0 0 1 10 0 0 0 0

A9 0 0 0 0 0 0 0 0 27 0 5 0

A10 0 0 0 0 0 0 0 0 0 19 2 5

A11 0 0 0 0 0 0 0 0 3 0 36 6

A12 0 0 0 0 0 0 0 0 0 6 0 14

Table 4.12: Confusion Matrix of Activities—Dataset B.

Predicted

A1 A2 A3 A4 A5

A
ct

u
a
l

A1 584 1 0 0 0

A2 0 619 7 0 0

A3 1 2 536 3 0

A4 0 0 0 378 14

A5 0 0 4 14 251

4.3.2.1 Discussion on Confusion Matrices

From table 4.11 and 4.12, it can be observed that, after the decision fusion module,

the number of correctly identified instances has drastically increased compared to

individual model results. This shows that due to the inclusion of the decision fusion

module, the performance of the proposed approach increased and the overall model

managed to return accurate predictions against test cases. This can very well be

true for real time data as well if used in the proposed approach.
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While this may very well be true for the basic activities, however, it can be observed

that the number of incorrectly predicted instances for the transition activities also

are in abundance. One can assume that the reason for this is the lesser number of

observations for transition activities in the dataset for the training of the models.

This fact is supported by the literature that deep neural networks perform the

best when the number of training data is available in abundance. However, in

this specific case, the number of observations for transition activities, in total, for

both training and testing was way lesser compared to basic activities. There were

also other datasets available with more depth features to benchmark the proposed

approach however none of them incorporated transition activities.

Due to these limitations, the models were unable to train efficiently for the tran-

sitional activities however due to the inclusion of the decision fusion module, the

weighted sum of probabilities was calculated which provided equal importance to

each network’s predictions and managed to return high precision and accuracy

for the overall transitional activities as well. On the other hand, the confusion

matrix for activities on dataset B shows a different story. As dataset B incor-

porated 5 basic activities, different from dataset A, the results showed a better

activity recognition rate along with the correctly predicted activities. The reason,

as stated before, is the availability of an abundant number of observations against

each activity. For dataset A with 12 activities, the average number of observations

for each activity (training and testing both) can be roughly considered as 1500 for

basic activities and almost 100 for transition activities. Whereas for dataset B, the

average number of observations against each activity can be considered as 4800.

It is to be noted that the total number of features for each instance in dataset A

was 561 time-frequency domain variables, whereas, for dataset B, each instance

incorporated only 60 variables.

This indicated that the models were trained much better on dataset B as they

had a greater number of instances per activity to build a more efficient network.

However, the issue of lower accuracy due to a lesser number of instances was

covered via the decision fusion module by providing equal importance to each

network’s predictions.
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4.3.3 Strengths & Weaknesses

Based on the analysis in the previous sections, the strengths of the proposed

approach can be summarised as following:

1 - The proposed approach is scalable.

2 - The proposed approach generates biased predictions and provides equal im-

portance to individual model results.

3- Multiple machine learning and deep learning models can be incorporated in the

framework in a plug and play manner. As stated above, the models can either be

conventional deep learning algorithms or deep learning models.

The only drawback of the proposed approach is that if multiple models (3+) are

integrated in the framework, the overall system becomes more complex and the

costly in terms of computational time. Moreover, depending on the type of models

being used, hardware resources may need to be upgraded as well. This will overall

increase the cost of the system.

4.3.4 Other Applications in HAR

A common example of a generalized RMS is Microsoft’s Remote Desktop client. A

user can easily access a Remote Computer from any other self-authorized system

while being anywhere globally. One can access his/her workplace system remotely

from home as if they were in front of their workplace system. More applications of

RMS include (but are not limited to) structure monitoring, power plants, network

operation centers, airports, smart grids, etc. The main goal of RMS is to provide

a semi or fully automated system which can manage, maintain and monitor a spe-

cific set of tasks efficiently over a network with reduced cost. This network can

be an IoT system or a local network system with a series of connected devices.

RMS reduces the cost associated with Manual Monitoring Systems in multiple

ways. They decrease the cost of data-gathering as manual data gathering requires

multiple workers to perform this task and chances of errors can be quite abundant.

However, RMS can perform this task in an automated way which requires fewer

personnel and provide an efficient error observation system to avoid and remove
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errors. Moreover, RMS are scalable and provide multiple opportunities to imple-

ment change. RMS utilizes certain devices to form a network, these devices can

either be vision-based devices such as cameras or sensor-based devices such as Ac-

celerometer, Gyroscope, etc. The selection of devices for the RMS is dependent on

the environment and requirements. Alongside commercial and household applica-

tions, RMS is also being used in sensor-based technologies with applications such

as Radars, Satellites, Airplanes, etc. Radar Systems are based on sensors that emit

radiations that are scattered or bounced back when they collide with an object

which helps in the interpretation of that object. Another impactful application of

RMS with sensors is Remote Health Monitoring (RHM). Real-time Health mon-

itoring of patients by a doctor from a remote location has a great impact on the

avoidance of irregularities and providing First Aid within the nick of time. RHM

shows great promise especially when it comes to elderly patients and physically

disabled patients. Different types of wearable sensors or health-monitoring sensors

such as heart rate sensors, pulse sensors, Oxygen sensors, Blood pressure sensors,

etc. are used in open or closed environments to observe the patients. Any kind

of abnormality in the patient’s behavior prompts the caretaker or doctor which

enables them to take certain measures as soon as possible.

Vision-based sensors are also used to monitor the Health Conditions of patients.

A camera is mounted near the patient’s vicinity which keeps track of the patient’s

movement and if the system detects any abnormal movement by the patient, it

prompts an alarm to notify the caretaker. However, vision-based devices do have

some shortcomings such as environmental limitations, camera angle, lighting and

contrast limitations, etc. Similarly, sensor-based devices also have shortcomings of

their own such as magnetic interference, faulty sensors, etc. Major work has been

done for RHM and newer efficient systems are still being designed to overcome

the shortcomings of current systems.

Though various RMS applications are easy to implement, they also produce a lot

of data that must be analyzed and exploited to attain certain results. Many of

these applications usually run-on web servers and require continuous sending and

retrieving of data which causes a delay in the service, and when it is concerned with
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Real-time monitoring of patients; this delay can be impactful to life-threatening

scenarios. To avoid this persisting problem, an efficient RMS is analyzed based on

a layered structure. The layers usually consist of Edge computing, Fog computing,

and Cloud computing Cloud computing provides large-scale data processing and

computing over the internet. There is no need to manage and maintain local

or online servers for data management and processing. Cloud servers are used to

handle and compute the data over the internet which reduces the cost and increases

the efficiency of RMS. Cloud-based monitoring enables effective remote monitoring

and smart resource scheduling by removing delays and data communication issues.

Many cloud-based health monitoring systems have been presented to overcome the

limitations of manual server-based data communication. A cloud-based server for

data communication and processing was also introduced. The data was gathered

by a cellphone embedded sensor and sent to the cloud-based server to be accessed

by the healthcare workers. Though there are many advantages in migrating to

cloud-based servers, so are some concerns. The vast distance between multiple

devices can cause high latency in data communication which can cause problems

for IoT apps that require low latency. Security and privacy are also major concerns

as the data is globally communicated through different channels along with other

users, so it may cause data loss and is not prone to cyberattacks.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis proposed and demonstrated the working of an ensemble multi-model

framework for efficient recognition of basic as well as transitional activities. The

proposed framework utilized multiple deep learning models i.e., LSTM, BLSTM

and CNN followed by a decision fusion module for the final classification of activ-

ities. The proposed approach has been tested on the publicly available datasets

for both, basic and transition, activities and compared with other state-of-the-art

approaches employing the same datasets.

The results exhibited that the proposed approach outperformed the referenced

approaches by achieving the classification accuracy of 96.11% on the HAPT dataset

and 98.38% on the HumanActivity dataset with transition and basic activities

respectively.

Furthermore, it is to be noted that conventional machine learning algorithms and

deep earning models can be embedded into the proposed framework in a plug and

play manner such that the required models can be incorporated easily in it. The

proposed model was created and experimented on in a Python environment with

Tensorflow and Keras.

The hardware utilized was a core i5 10th gen processor with 8GB RAM and an

Nvidia 1650ti GPU. The algorithm can be used to easily reproduce the work done

61
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and it can run on a conventional system without explicit use of GPU. GPU was

utilized in our case to speed up the training in case of a much higher number

of epochs, however, it is not at all explicitly required to reproduce the proposed

approach.

5.2 Future Prospects

For forthcoming research, the proposed approach can be transformed into a parallel

architecture to further improve the processing speed for real-time implementation

while putting some effort into compiling a dataset consisting of complex transition

activities. Furthermore, different and more M.L & D.L models can be added to the

architecture and data can be divided into clusters to train each model on different

types of data.
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